skip to main content


Search for: All records

Creators/Authors contains: "Ross, Shane D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    This work serves as a bridge between two approaches to analysis of dynamical systems: the local, geometric analysis, and the global operator theoretic Koopman analysis. We explicitly construct vector fields where the instantaneous Lyapunov exponent field is a Koopman eigenfunction. Restricting ourselves to polynomial vector fields to make this construction easier, we find that such vector fields do exist, and we explore whether such vector fields have a special structure, thus making a link between the geometric theory and the transfer operator theory. 
    more » « less
  2. null (Ed.)
    Maple trees (genus Acer) accomplish the task of distributing objects to a wide area by producing seeds, known as samaras, which are carried by the wind as they autorotate and slowly descend to the ground. With the goal of supporting engineering applications, such as gathering environmental data over a broad area, we developed 3D-printed artificial samaras. Here, we compare the behavior of both natural and artificial samaras in both still-air laboratory experiments and wind dispersal experiments in the field. We show that the artificial samaras are able to replicate (within one standard deviation) the behavior of natural samaras in a lab setting. We further use the notion of windage to compare dispersal behavior, and show that the natural samara has the highest mean windage, corresponding to the longest flights during both high wind and low wind experimental trials. This study demonstrated a bioinspired design for the dispersed deployment of sensors and provides a better understanding of wind-dispersal of both natural and artificial samaras. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
    There are two main strategies for improving the projection-based reduced order model (ROM) accuracy—(i) improving the ROM, that is, adding new terms to the standard ROM; and (ii) improving the ROM basis, that is, constructing ROM bases that yield more accurate ROMs. In this paper, we use the latter. We propose two new Lagrangian inner products that we use together with Eulerian and Lagrangian data to construct two new Lagrangian ROMs, which we denote α-ROM and λ-ROM. We show that both Lagrangian ROMs are more accurate than the standard Eulerian ROMs, that is, ROMs that use standard Eulerian inner product and data to construct the ROM basis. Specifically, for the quasi-geostrophic equations, we show that the new Lagrangian ROMs are more accurate than the standard Eulerian ROMs in approximating not only Lagrangian fields (e.g., the finite time Lyapunov exponent (FTLE)), but also Eulerian fields (e.g., the streamfunction). In particular, the α-ROM can be orders of magnitude more accurate than the standard Eulerian ROMs. We emphasize that the new Lagrangian ROMs do not employ any closure modeling to model the effect of discarded modes (which is standard procedure for low-dimensional ROMs of complex nonlinear systems). Thus, the dramatic increase in the new Lagrangian ROMs’ accuracy is entirely due to the novel Lagrangian inner products used to build the Lagrangian ROM basis. 
    more » « less